Abstract
Cold shock proteins (Csps) are multifunctional nucleic acid binding proteins used to regulate a wide range of gene expression responses in bacteria. We report here that Csps regulate the production of the pore-forming cytolysin listeriolysin (LLO) and hemolysis phenotypes in Listeria monocytogenes. A triple csp gene deletion mutant incapable of producing any Csps, as well as double csp gene deletion mutants only producing either CspA or CspD, caused less hemolysis and produced lower LLO concentration. On the other hand, another double csp gene deletion mutant that produces CspB retained hemolysis and LLO production levels that are similar to the parental wild-type strain. Transcription analysis showed that in absence of all three csp genes or cspB alone, L. monocytogenes cells have decreased levels of hly gene transcripts, which code for the synthesis of LLO proteins. A comparative examination of mRNA stability showed that hly transcripts were more rapidly degraded in L. monocytogenes triple csp gene deletion mutant cells that are not capable of producing Csps. Overall, our results indicate that Csps, in particular CspB, are important components of gene expression regulatory mechanisms that promote efficient LLO production and hence virulence responses of L. monocytogenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.