Abstract

Bacteria have evolved a number of mechanisms for coping with stress and adapting to changing environmental conditions. Many bacteria produce small cold shock proteins (Csp) as a response to rapid temperature downshift (cold shock). During cold shock, the cell membrane fluidity and enzyme activity decrease, and the efficiency of transcription and translation is reduced due to stabilization of nucleic acid secondary structures. Moreover, protein folding is inefficient and ribosome function is hampered. Csps are thought to counteract these harmful effects by serving as nucleic acid chaperons that may prevent the formation of secondary structures in mRNA at low temperature and thus facilitate the initiation of translation. However, some Csps are non-cold inducible and they are reported to be involved in various cellular processes to promote normal growth and stress adaptation responses. Csps have been shown to contribute to osmotic, oxidative, starvation, pH and ethanol stress tolerance as well as to host cell invasion. Therefore, Csps seem to have a wider role in stress tolerance of bacteria than previously assumed. Yersinia enterocolitica and Yersinia pseudotuberculosis are enteropathogens that can spread through foodstuffs and cause an enteric infection called yersiniosis. Enteropathogenic Yersinia are psychrotrophs that are able to grow at temperatures close to 0°C and thus they set great challenges for the modern food industry. To be able to efficiently control psychrotrophic Yersinia during food production and storage, it is essential to understand the functions and roles of Csps in stress response of enteropathogenic Yersinia.

Highlights

  • Bacteria encounter changing environmental conditions during food production and storage and they have evolved a number of mechanisms for coping with stress and adapting to changing environments

  • Bacteria respond to a rapid temperature drop by a transient induction of cold induced proteins (Cips) (Graumann and Marahiel, 1996; Phadtare, 2004) and the production of Cips increases with the severity of the cold shock (Hébraud and Potier, 1999)

  • Induced by cold Involved in regulation of expression of stress response proteins RpoS and UspA CspE constitutively produced at 37◦C, increase in production during lag phase

Read more

Summary

INTRODUCTION

Bacteria encounter changing environmental conditions during food production and storage and they have evolved a number of mechanisms for coping with stress and adapting to changing environments. In modern food production refrigeration is one of the key elements in maintaining food safety. At cell level temperature downshift decreases the fluidity of cell membranes, which affects active transport and protein secretion (Phadtare and Severinov, 2010). The efficiency of transcription and translation is reduced due to stabilization of the secondary structures of DNA and RNA, protein folding is inefficient, and ribosomes need to be adapted to cold before they can function properly (Phadtare, 2004). The aim of cold shock response is to help bacterial cells to overcome these changes (Phadtare and Severinov, 2010)

Cold Shock Proteins of Yersinia
COLD SHOCK PROTEINS
FUNCTION OF COLD SHOCK PROTEINS DURING COLD SHOCK
Induced by cold
COLD SHOCK PROTEINS OF ENTEROPATHOGENIC Yersinia
Findings
CONCLUSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call