Abstract

The excessive and uncontrollable discharge of diverse organic pollutants into the environment has emerged as a significant concern, presenting a substantial risk to human health. Among the advanced oxidation processes used for the purification of wastewater, cold plasma technology is superior in fast and effective decontamination but often fails facing mixed pollutants. To address these issues, here we develop the new conceptual approach, plasma process, and proprietary reactor that ensure, for the first time, that the efficiency of treatment (114.7%) of two mixed organic dyes, methylene blue (MB) and methyl orange (MO), is higher than when the two dyes are treated separately. We further reveal the underlying mechanisms for the energy-efficient complete degradation of the mixed dyes. The contribution of plasma-induced ROS and the distinct degradation characteristics and mechanism of pollutants in mixed treatment are discussed. The electron transfer pathway revealed for the first time suggest that the mixed pollutants reduce the overall redox potentials and facilitate electron transfer during the plasma treatment, promoting synergistic degradation effects. The integrated frameworks including both direct and indirect mechanisms provide new insights into the high-efficiency mixed-contaminant treatment. The degradation products for mixed degradation are revealed based on the identification of intermediate species. The plasma-treated water is proven safe for living creatures in waterways and sustainable fishery applications, using in vivo zebrafish model bio-toxicity assay. Overall, these findings offer a feasible approach and new insights into the mechanisms for the development of highly-effective, energy-efficient technologies for wastewater treatment and reuse in agriculture, industry, and potentially in urban water networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.