Abstract

Customer demand for convenient food products has led to an increased production of prepackaged and ready-to-eat food products. Most of these products rely mainly on surface disinfection and other traditional approaches to ensure shelf life and safety. Novel processing techniques, such as cold plasma, are currently being investigated to enhance the safety and shelf life of prepacked foods. The purpose of this study was to determine the effects of cold plasma corona discharge on the inactivation of Salmonella on prepackaged, tomato-and-lettuce mixed salads. Two different inoculation methods were evaluated to address cross-contamination of Salmonella from cherry tomatoes to lettuce and vice versa. In separate studies, a sample of either cherry tomatoes (55 g) or romaine lettuce (10 g) was inoculated with a Salmonella cocktail (6.93 ± 0.99 log CFU/mL), placed into a commercial polyethylene terephthalate plastic container, and thoroughly mixed together with its noninoculated counterpart. Mixed salads were allowed to dry in a biosafety cabinet for 1 h. Samples were treated with 35 kV cold plasma corona discharge inside plastic containers for 3 min. Samples were stomached and serially diluted in buffered peptone water and then were plated onto aerobic plate count Petrifilm and incubated for 18 h at 37°C. When lettuce was the inoculated counterpart, log kill of Salmonella was significantly greater on tomatoes (0.75 log CFU/g) compared with lettuce (0.34 log CFU/g) (P = 0.0001). Salmonella was reduced on mixed salad only when lettuce was the inoculated counterpart (0.29 log CFU/g) (P = 0.002). Cold plasma can kill Salmonella in a prepackaged mixed salad, with efficacy dependent on the nature of contamination, direction of transfer, and the surface topography of the contaminated commodity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call