Abstract

Cold plasma is gaining increasing attention as a novel tool to activate energy demanding chemical processes, including advanced reduction/oxidation processes (AROPs) of organic pollutants in water. The very complex milieu generated by discharges at the water/plasma interface comprises photons, strong oxidants and strong reductants which can be exploited for achieving the degradation of most any kind of pollutants. Despite the complexity of these systems, the powerful arsenal of mechanistic tools and chemical probes of physical organic chemists can be usefully applied to understand and develop plasma chemistry. Specifically, the added value of air plasma generated by in situ discharge with respect to ozonation (ex situ discharge) is demonstrated using phenol and various phenol derivatives and mechanistic evidence for the prevailing role of hydroxyl radicals in the initial attack is presented. On the reduction front, the impressive performance of cold plasma in inducing the degradation of recalcitrant perfluoroalkyl substances, which do not react with OH radicals but are attacked by electrons, is reported and discussed. The widely different reactivities of perfluorooctanoic acid (PFOA) and of perfluorobutanoic acid (PFBA) underline the crucial role played in these processes by the interface between plasma and solution and the surfactant properties of the treated pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call