Abstract

Opioids are powerful analgesic drugs that are used clinically to treat pain. However, chronic opioid use causes compensatory neuroadaptations that result in greater pain sensitivity during withdrawal, known as opioid withdrawal-induced hyperalgesia (OWIH). Cold nociception tests are commonly used in humans, but preclinical studies often use mechanical and heat stimuli to measure OWIH. Thus, further characterization of cold nociception stimuli is needed in preclinical models. We assessed three cold nociception tests—thermal gradient ring (5–30 °C, 5–50 °C, 15–40 °C, and 25–50 °C), dynamic cold plate (4 °C to −1 °C at −1 °C/min, −1 °C to 4 °C at +1 °C/min), and stable cold plate (10 °C, 6 °C, and 2 °C)—to measure hyperalgesia in a mouse protocol of heroin dependence. On the thermal gradient ring, mice in the heroin withdrawal group preferred warmer temperatures, and the results depended on the ring's temperature range. On the dynamic cold plate, heroin withdrawal increased the number of nociceptive responses, with a temperature ramp from 4 °C to −1 °C yielding the largest response. On the stable cold plate, heroin withdrawal increased the number of nociceptive responses, and a plate temperature of 2 °C yielded the most significant increase in responses. Among the three tests, the stable cold plate elicited the most robust change in behavior between heroin-dependent and nondependent mice and had the highest throughput. To pharmacologically characterize the stable cold plate test, we used μ-opioid and non-opioid receptor-targeting drugs that have been previously shown to reverse OWIH in mechanical and heat nociception assays. The full μ-opioid receptor agonist methadone and μ-opioid receptor partial agonist buprenorphine decreased OWIH, whereas the preferential μ-opioid receptor antagonist naltrexone increased OWIH. Two N-methyl-d-aspartate receptor antagonists (ketamine, MK-801), a corticotropin-releasing factor 1 receptor antagonist (R121919), a β2-adrenergic receptor antagonist (butoxamine), an α2-adrenergic receptor agonist (lofexidine), and a 5-hydroxytryptamine-3 receptor antagonist (ondansetron) had no effect on OWIH. These data demonstrate that the stable cold plate at 2 °C yields a robust, reliable, and concise measure of OWIH that is sensitive to opioid agonists.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call