Abstract
Cold nights impact grapevine flower development and fruit set. Regulation at the female meiosis stepmay be of considerable importance for further understanding on how flower reacts to cold stress. In this study, the impact of chilling temperature (0°C overnight) on carbon metabolism was investigated in the inflorescencesof two cultivars, Pinot noir (Pinot) and Gewurztraminer (Gewurtz.). Fluctuations in photosynthetic activity and carbohydrate metabolism were monitored by analyzing gas exchanges, simultaneous photosystem I and II activities, andcarbohydrate content. Further, the expression of PEPc, PC, FNR, ISO, OXO, AGPase, amylases and invertase genes, activities of various enzymes, as well as metabolomic analysis were attained. Results showed that the chilling night has different impacts depending on cultivars. Thus, in Gewurtz., net photosynthesis (Pn) was transiently increased whereas, in Pinot, the Pn increase was persistent and concomitant with an inhibition of respiration. However, during the days following the cold night, photosynthetic activity was decreased, and the cyclic electron flow was inhibited in Gewurtz., suggesting lower efficient energy dissipation. Likewise, metabolomic analysis revealed that several metabolites contents (namely alanine, GABA, lysine and succinate)were distinctly modulated in the two cultivars. Taking together, these results reflect a photosynthetic metabolism alteration or internal CO2 conductance in Gewurtz. explaining partly why Pinot is less susceptible to cold stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.