Abstract

We review the different cold dark gas models that have been proposed in the literature, as well as a new variant which addresses their principal stability problems by taking into account the property of molecular hydrogen to become solid or liquid below 33 K and at sufficiently high pressure. This new physical ingredient provides the possibility to stabilise cold gas globules by a core of condensed molecular hydrogen. Such loosely bound cold globules behave in a galaxy as a collisionless ensemble of matter, and form a reservoir of gas easily liberated through, e.g., UV excitation. the cold condensed cores survive the longest, of order a Gyr in the solar neighbourhood radiation field, and much longer in spiral outer HI disks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.