Abstract

ABSTRACT We report on observations of redshifted CO(1–0) line emission and observed-frame $\rm \sim 30\,$GHz radio continuum emission from five ultra-luminous, mid-IR selected hot, Dust-Obscured Galaxies (Hot DOGs) at $z\rm \gtrsim 3$ using the Karl G. Jansky Very Large Array. We detect CO(1–0) line emission in all five Hot DOGs, with one of them at high signal-to-noise ratio. We analyse FIR-radio spectral energy distributions, including dust, free–free, and synchrotron emission for the galaxies. We find that most of the $\rm 115\,$ GHz rest-frame continuum is mostly due to synchrotron or free–free emission, with only a potentially small contribution from thermal emission. We see a deficit in the rest-frame $\rm 115\,$ GHz continuum emission compared to dusty star-forming galaxies and sub-millimetre galaxies (SMGs) at high redshift, suggesting that Hot DOGs do not have similar cold gas reserves compared with star-forming galaxies. One target, W2305−0039, is detected in the FIRST $\rm 1.4\, GHz$ survey, and is likely to possess compact radio jets. We compare to the FIR–radio correlation, and find that at least half of the Hot DOGs in our sample are radio-quiet with respect to normal galaxies. These findings suggest that Hot DOGs have comparably less cold molecular gas than star-forming galaxies at lower, $z\rm \sim 2$ redshifts, and are dominated by powerful, yet radio-quiet AGN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call