Abstract

Cold model investigations were performed in two and three phase systems, including water-, slag- and gas-phase. The following nozzle-arrangements were chosen: single central nozzle, centric row, eccentric row and eccentric triangle. The investigations show an intensive vortex formation in the bath as a result of a coupled variation of parameters like blowing rate and existence of a slag simulation phase. A clear-cut vortex is evident at an undercritical blowing rate. The buoyant free jets do not describe a stable path to the bath surface. Two liquid zones with two mutually distinct directions of circulation are present. In the case of the eccentric arrangements of the nozzles, a vortex occurs in the smaller partial zone; however, this vortex is not always stable. In the larger partial zone, a stable vortex with circular motion occurs. The tests with eccentric arrangements yield the best mixing results as a whole. The flow conditions in the bath at a supercritical volume flow rate effect the phenomenon of sloshing, that is an oscillating motion of the bath. The critical flow rate depends on the arrangement of the nozzles. The inception of sloshing occurs at a relatively low blowing rate with the use of a single central nozzle. Turbulent regions are observed in the bath here. In the case of eccentric nozzle arrangements, sloshing occurs only at higher blowing rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.