Abstract

Cold lability of pyruvate, orthophosphate dikinase was investigated using a homogeneous, purified enzyme preparation from maize (Zea mays L. var. Golden Cross Bantam T51) leaves. Its stability was markedly reduced below about 10 C and the rate of cold inactivation followed first order kinetics at a concentration lower than about 0.1 milligram of enzyme per milliliter. Cold inactivation was little affected by pH in the range which gives good stability for the enzyme at warm temperatures and the enzyme activity was protected strongly by inclusion of substrates (pyruvate and phosphoenolpyruvate) and polyols such as sucrose, sorbitol, and glycerol. Loss of catalytic activity was accompanied by an apparent dissociation of a tetrameric form of the enzyme (9S form) into a new, more slowly sedimenting (5.1S) component. Inclusion of pyruvate at 4 mM in the cold-treated enzyme had no effect on the sedimentation value. A sharp change in activation energy of the dikinase-catalyzed reaction was observed near 12 C and its break point appears to be close to the generally accepted critical low temperature limit for the growth of maize plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call