Abstract

Transparent conducting electrodes (TCEs) are considered to be an essential structural component of flexible organic solar cells (FOSCs). Silver nanowire (AgNW) electrodes are widely used as TCEs owing to their excellent electrical and optical properties. The fabrication of AgNW electrodes has faced challenges in terms of forming large uniform interconnected networks so that high conductivity and reproducibility can be achieved. In this study, a simple method for creating an intimate contact between AgNWs that uses cold isostatic pressing (CIP) is demonstrated. This method increases the conductivity of the AgNW electrodes, which enables the fabrication of high-efficiency inverted FOSCs that have a power conversion efficiency of 8.75% on flexible polyethylene terephthalate with no short circuiting occurring as the CIP process minimizes the surface roughness of the AgNW electrode. This allows to achieve 100% manufacturing yield of FOSCs. Furthermore, these highly efficient FOSCs are proven to only be 2.4% less efficient even for an extreme bending radius of R ≈ 1.5 mm, compared with initial efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.