Abstract

BackgroundCold-inducible RNA-binding protein (CIRP or hnRNP A18) is a multifunctional stress-responsive protein. Our previous study demonstrated that cold stress increased CIRP expression and migrated from the nucleus to the cytoplasm in airway epithelial cells. However, the mechanism through which CIRP migrates from the nucleus to the cytoplasm upon cold stress remains unknown.MethodsThe expression of CIRP in the bronchial epithelium was examined using immunofluorescence, real-time polymerase chain reaction (RT-PCR), and Western blotting. The expression of inflammatory factors interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) were detected by ELISA and RT-PCR. Transient receptor potential melastatin 8 (TRPM8) receptor function was characterized by Ca2+ imaging.ResultsCold stress upregulated the expression of CIRP, inflammatory factors and promoted the translocation of CIRP from the nucleus to the cytoplasm in normal human bronchial epithelial (NHBE) cells. Cold stress activated the TRPM8/(Ca2+)/PKCα/glycogen synthase kinase 3β (GSK3β) signaling cascade, and that inhibition of this signaling pathway attenuated the migration of CIRP from the nucleus to cytoplasm but did not decrease its overexpression induced by cold stress. Knocked down CIRP expression or blocked CIRP migration between the nucleus and cytoplasm significantly decreased inflammatory factor expression.ConclusionsThese results indicate that cold stress leads to the migration of CIRP from the nucleus to the cytoplasm with alteration of expression, which are involved in the expression of inflammatory factors (IL-1β, IL-6, IL-8 and TNF-α) induced by cold air, through TRPM8/Ca2+/PKCα/GSK3β signaling cascade.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call