Abstract

The present study investigated cold hydrolysis of cassava pulp (CP) and the use of cold hydrolysis with simultaneous saccharification and fermentation (SSF) for ethanol production. Cold hydrolysis of 100 g-CP/L at 50 °C for 2 h, followed by at 30 °C for 72 h resulted in the production of 71.5 ± 1.8 g/L of reducing sugar, with a yield of 0.72 g/g-CP. A mathematical model describing the cold hydrolysis process was subsequently developed. The model proved to be applicable for other cold hydrolysis systems with satisfactory results. The sequential process of cold hydrolysis at 50 °C for 2 h, followed by SSF at 30 °C for 72 h gave 27.4 g-ethanol/L, with a productivity of 0.37 g/(L h) and a fermentation efficiency of 57.58%. Based on the results, a bioconversion process for CP to ethanol was proposed. In this process, 1 kg of ethanol could be produced from 3.65 kg of CP without any nutrient supplementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.