Abstract

Narrow optical transitions in highly charged ions (HCIs) are of particular interest for metrology and fundamental physics, exploiting the high sensitivity of HCIs to new physics. The highest sensitivity for a changing fine structure constant ever predicted for a stable atomic system is found in Ir17 + . However, laser spectroscopy of HCIs is hindered by the large (∼ 106 K) temperatures at which they are produced and trapped. An unprecedented improvement in such laser spectroscopy can be obtained when HCIs are cooled down to the mK range in a linear Paul trap. We have developed a cryogenic linear Paul trap in which HCIs will be sympathetically cooled by 9Be + ions. Optimized optical access for laser light is provided while maintaining excellent UHV conditions. The Paul trap will be connected to an electron beam ion trap (EBIT) which is able to produce a wide range of HCIs. This EBIT will also provide the first experimental input needed for the determination of the transition energies in Ir17 + , enabling further laser-spectroscopic investigations of this promising HCI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call