Abstract

The growth of supermassive black holes, especially the associated state of active galactic nuclei (AGNs), is generally believed to be the key step in regulating star formation in massive galaxies. As the fuel of star formation, the cold gas reservoir is a direct probe of the effect of AGN feedback on their host galaxies. However, in observations, no clear connection has been found between AGN activity and the cold gas mass. In this paper, we find observational signals of the significant depletion of the total neutral hydrogen gas reservoir in optically selected Type 2 AGN-host central galaxies of stellar mass 109–1010 M ⊙. The effect of AGN feedback on the cold gas reservoir is stronger for higher star formation rates and higher AGN luminosity. But it becomes much weaker above this mass range, consistent with previous findings focusing on massive galaxies. Our result suggests that low-mass and gas-rich AGN-host central galaxies would first form dense cores before AGN feedback is triggered, removing their neutral hydrogen gas. More massive central galaxies may undergo a significantly different formation scenario by gradually building up dense cores with less effective and recurrent AGN feedback.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call