Abstract

The mass spectrometer Lohengrin of the Institut Laue-Langevin in Grenoble was used to measure fission-fragment mass yields in the mass range 80 ≤ A ≤ 107 for light-fission-fragment kinetic energies up to about 115 MeV for the reactions 233,235U(n th, f). The kinetic energies corresponding to a common fixed yield level for each isobar reflect the influence of the proton pairing energy, but not of the neutron pairing energy. By using calculated Q-values for the different mass splits, mass distributions at fixed total excitation energy are deduced from the data. At a fixed total excitation energy of about 7 MeV, the yield increases from very asymmetric mass splits ( A L ≈ 80) to more symmetric mass splits ( A L ≈ 105) by more than two orders of magnitude. This strong dependence on the mass split seems to be correlated with the decreasing surface-to-surface distance of the unaccelerated fission fragments in this range of mass splits, as calculated under the assumption that the total Q-value is represented by the mutual Coulomb repulsion of the two fragments. The influence of the fission-fragment ground-state deformations on the yield in cold fragmentation could not be detected unambiguously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call