Abstract

A circulating fluidized bed configuration has been developed for application in the oxidative coupling process. The configuration comprises a bottom turbulent fluidized bed, wherein the oxidative coupling reaction is conducted, followed by a reduced-diameter top fast bed for catalyst entrainment and hydrocarbon cracking. The hydrodynamic characteristics of this configuration have been investigated in a pilot-plant cold flow unit. Detailed experimental results on the turbulent bed flow structure and the gas phase residence time distribution are presented and discussed. The performanceofthe proposed reactor is analyzed by computer simulation studies based on a published oxidative coupling kinetic model. It is shown that improved hydrocarbon yields can be obtained by optimizing the hydrodynamic structure and the mixing characteristics of the turbulent bed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call