Abstract
Monocrystalline silicon is still very interesting material for solar cells fabrication due to its quality and external efficiency. Nevertheless during a tailoring of eligible silicon wafers, some inhomogeneities or irregularities emerge and provide defects which give trouble to good operation of solar panels. Generally, there are two classes of defects in silicon wafer: material defects due to imperfections or irregularity in crystal structure (point, line, square or volume defects), and defects induced by wafer processing. To avoid a use of damaged cells, macroscopic and microscopic measurement techniques must be applied. In this paper we present a microscopic method combining electrical noise measurements with scanning probe localization of luminous micro-spots defects. The paper brings experimental results showing local electric and optical investigations of defects in etched monocrystalline silicon solar cells and a use of cold field emission tungsten electrode as a local probe for apertureless scanning near-field optical microscope.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.