Abstract

Air-fuel mixture preparation is particularly challenging during cold engine throttle transients due to poor fuel vaporization and transport delays in port fuel injected (PFI) engines. In this study, a PFI Cooperative Fuels Research engine is used to evaluate torque and measure in cylinder and exhaust CO, CO2 and unburned hydrocarbons during throttle transients at various early stages of engine warm-up. Fast flame ionization detectors and non-dispersive infra-red fast CO and CO2 detectors are used to provide detailed cycle-by-cycle analysis. Torque after cold throttle transients is found to be comparable to steady state torque due to allowable spark advance. However, cold transients produce up to 4 times the unburned hydrocarbons when compared to steady state operation. Finally, the x-tau fuel control model is evaluated in this challenging operating regime and is found to provide poor transient fuel control due to excessive fueling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.