Abstract

We introduce a method for classical trajectory calculations to simulate collisions between atoms and large rigid asymmetric-top molecules. We investigate the formation of molecule-helium complexes in buffer-gas cooling experiments at a temperature of 6.5 K for molecules as large as naphthalene. Our calculations show that the mean lifetime of the naphthalene-helium quasi-bound collision complex is not long enough for the formation of stable clusters under the experimental conditions. Our results suggest that it may be possible to improve the efficiency of the production of cold molecules in buffer-gas cooling experiments by increasing the density of helium. In addition, we find that the shape of molecules is important for the collision dynamics when the vibrational motion of molecules is frozen. For some molecules, it is even more crucial than the number of accessible degrees of freedom. This indicates that by selecting molecules with suitable shape for buffer-gas cooling, it may be possible to cool molecules with a very large number of degrees of freedom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.