Abstract

Cold-brewed jasmine tea (CB-JT) is regarded to possess characteristic flavors and health benefits as a novel resource of functional tea beverages. To investigate the molecular mechanisms underlying CB-JT-mediated protective effects on obesity, we evaluated the serum biochemistry, histological condition, glucose tolerance, gene expression profile and intestinal microbial diversity in high-fat diet (HFD)-fed mice. Our results demonstrate that cold-brewed jasmine tea can significantly attenuate HFD-induced body weight gain, abnormal serum lipid levels, fat deposition, hepatic injury, inflammatory processes as well as metabolic endotoxemia. CB-JT also modified the microbial community composition in HFD-fed mice and altered the balance to one closely resembled that of the control group. The differential abundance of core microbes in obese mice was reversed by CB-JT treatment, including an increment in the abundance of Blautia, Mucispirillum, and Bilophila as well as a decrease in the abundance of Alloprevotella. CB-JT was proved to regulate the mRNA expression levels of lipid metabolism-related genes such as Leptin, Pgc1a Il6, and Il1b in the adipose tissue coupled with Cyp7a1, Lxra, Srebp1c, and Atgl in the liver. These findings indicate that cold-brewed jasmine tea might be served as a potential functional tea beverage to prevent obesity and gut microbiota dysbiosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.