Abstract

Hypothermia is the most reliably effective neuroprotectant, and yet systemic complications limit application. A large body of animal data suggests that hypothermia is effective for focal cerebral ischemia, namely acute ischemic stroke. In order to apply hypothermia effectively, a selective approach is required to maximize the effect on the brain while minimizing systemic side effects. Due to poor transferability of promising findings in rodent models to human clinical trials for neuroprotection, the focus of this review is large animal gyrencephalic models. Unlike rodent data which favor mild hypothermia, the majority of large animal studies on selective hypothermia support moderate-to-deep hypothermia (<30°C). Cold blood perfusion produces the rapid rate of temperature reduction and depth of hypothermia required to produce meaningful neuroprotection. Further studies of selective hypothermia in acute ischemic stroke require attention to duration and rate of cooling to optimize the neuroprotection offered by this technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call