Abstract
Cold atmospheric plasma (CAP) is a novel biomedical tool used for cancer therapy. A device using nitrogen gas (N2 CAP) produced CAP that induced cell death through the production of reactive nitrogen species and an increase in intracellular calcium. In this study, we investigated the effect of N2 CAP-irradiation on cell membrane and mitochondrial function in human embryonic kidney cell line 293T. We investigated whether iron is involved in N2 CAP-induced cell death, as deferoxamine methanesulfonate (an iron chelator) inhibits this process. We found that N2 CAP induced cell membrane disturbance and loss of mitochondrial membrane potential in an irradiation time-dependent manner. BAPTA-AM, a cell-permeable calcium chelator, inhibited N2 CAP-induced loss of mitochondrial membrane potential. These results suggest that disruption of intracellular metal homeostasis was involved in N2 CAP-induced cell membrane rupture and mitochondrial dysfunction. Moreover, N2 CAP irradiation generated a time-dependent production of peroxynitrite. However, lipid-derived radicals are unrelated to N2 CAP-induced cell death. Generally, N2 CAP-induced cell death is driven by the complex interaction between metal movement and reactive oxygen and nitrogen species produced by N2 CAP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.