Abstract

Thyrotropin-releasing hormone (TRH)-containing neurons have been implicated in the central control of body temperature. TRH-containing neurons are located in brain areas known to influence body temperature, and TRH injected into these areas can produce changes in body temperature. While these lines of evidence support the view that central TRH is involved in thermoregulation, it has been difficult to confirm that TRH-containing neurons of the preoptic area are involved in this process. We used a different approach to test this hypothesis, based on recent evidence that changes in cellular levels of neuropeptide mRNA are linked to changes in neurosecretory processes. Hence, we predicted that if TRH neurons of the preoptic area are involved in body temperature regulation, cellular levels of TRH mRNA would be altered in animals in which body temperature had been experimentally altered. TRH mRNA levels were measured by in situ hybridization histochemistry in neurons of the preoptic area (POA) of animals that had been exposed to cold (5°C) or that had been given a hypothermic dose of ethanol. Cellular levels of TRH mRNA were reduced by both treatments. However, cellular levels of the mRNA-encoding gastrin-releasing peptide were not affected by these treatments in neurons of the POA, indicating that hypothermia exerted selective effects on TRH neurons in this brain region. Considering that both cold exposure and ethanol administration increase blood pressure, that the POA contains neurons which are both thermosensitive and barosensitive, and that TRH has been implicated in the control of blood pressure, we manipulated arterial blood pressure pharmacologically without changing body temperature to determine whether TRH neurons were also responsive to cardiovascular changes. Infusions with either nitroprusside, a vasodilator, or phenylephrine, a vasoconstrictor, produced significant changes in arterial blood pressure and heart rate, but did not affect TRH mRNA in the POA. These findings demonstrate that TRH neurons of the POA are thermoresponsive, supporting the view that they play a role in the central control of body temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call