Abstract

Changes in the levels of energy metabolites can limit survival ability of Drosophila species under stressful conditions but this aspect has received less attention in wild populations collected in different seasons. We tested cold or desiccation triggered changes in the accumulation or utilization of two energy metabolites (trehalose and proline) in Drosophila immigrans flies reared under season specific environmental conditions. Such D.immigrans populations were subjected to different durations of cold (0°C) or desiccation stress (5% RH) or dual stress. We found stress induced effects of cold vs desiccation on the levels of trehalose as well as for proline. Different durations of cold stress led to accumulation of trehalose while desiccation stress durations revealed utilization of trehalose. In contrast, there was accumulation of proline under desiccation and utilization of proline with cold stress. Since accumulation levels were higher than utilization of each energy metabolite, the effects of dual stress showed additive effect. However, there was no utilization of total body lipids under cold or desiccation stress. We observed significant season specific differences in the amount of energy metabolites but the rate of metabolism did not vary across seasons. Stress triggered changes in trehalose and proline suggest possible link between desiccation and cold tolerance. Finally, stress specific (cold or desiccation) compensatory changes in the levels of trehalose and proline suggest possible energetic homeostasis in D.immigrans living under harsh climatic conditions of montane localities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call