Abstract

ABSTRACTCold adaptation is an evolutionary process that has dramatic impact on enzymatic activity. Increased flexibility of the protein structure represents the main evolutionary strategy for efficient catalysis and reaction rates in the cold, but is achieved at the expense of structural stability. This results in a significant activity-stability tradeoff, as it was observed for several metabolic enzymes. In polymerases, however, not only reaction rates, but also fidelity plays an important role, as these enzymes have to synthesize copies of DNA and RNA as exact as possible. Here, we investigate the effects of cold adaptation on the highly accurate CCA-adding enzyme, an RNA polymerase that uses an internal amino acid motif within the flexible catalytic core as a template to synthesize the CCA triplet at tRNA 3′-ends. As the relative orientation of these residues determines nucleotide selection, we characterized how cold adaptation impacts template reading and fidelity. In a comparative analysis of closely related psychro-, meso-, and thermophilic enzymes, the cold-adapted polymerase shows a remarkable error rate during CCA synthesis in vitro as well as in vivo. Accordingly, CCA-adding activity at low temperatures is not only achieved at the expense of structural stability, but also results in a reduced polymerization fidelity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.