Abstract

Susceptibility of trees to freezing injury has been suggested to increase in boron (B) deficiency but there is no experimental evidence to support this proposition. In this study, Norway spruce (Picea abies L. Karst.) seedlings were cultivated for two growing seasons in deficient, intermediate and ‘optimal’ B levels. Cold hardening of the seedlings was measured after the second growing season. Freezing tolerance in tips of shoots, needles, stems and roots was determined by controlled freezing tests and electrolyte leakage method, and that of buds, in addition, by differential thermal analysis (DTA). Electrical impedance was used to monitor changes in the apoplastic space during cold acclimation. Root dry weight and shoot height growth were lower in B deficiency. Cold acclimation of buds and stems was reduced by B deficiency. When hardened seedlings were subjected to subzero temperatures for 3 weeks, extracellular electrical resistance of stems became the highest at the lowest B supply which was probably due to decreased desiccation tolerance. As a conclusion, susceptibility to freezing damage may be increased by B deficiency in Norway spruce trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.