Abstract

SummaryThe coking issue is the main challenge for dry reforming of methane (DRM) over Ni-based catalysts. Herein, we excavate the reasons for the enhanced coking resistance of the bounded Ni over the free state Ni in Ni/γ-Al2O3 catalysts for DRM. Rational metal-support interaction of the bounded Ni would facilitate desorption of CO, thus suppressing CO disproportionation and decreasing carbon deposition. The higher activity of the bounded Ni is ascribed to better methane cracking ability, stronger adsorption, and activation of CO2 by forming polydentate carbonate. The better activation of CO2 over the bounded Ni would also contribute to the gasification of formed coke. We gain an insight into the anti-coking mechanism of DRM determined by metal-support interaction in Ni/γ-Al2O3 catalysts through mechanistic studies. It is believed that our findings would enlighten the design of more efficient catalysts for DRM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.