Abstract

Acetylene (C2H2) is a reactive molecule with a low C : H stoichiometry that can be used to evaluate aspects of the resistance of metal-based catalysts to the formation of carbonaceous residue (coking). Herein we summarize our results for C2H2 chemisorption and thermal reaction on four well-defined, ordered surface alloys of Pt–Sn prepared by Sn vapor deposition on Pt(100) and Pt(111) single crystals under UHV conditions. While chemisorption of C2H2 under UHV conditions on Pt is completely irreversible, i.e., thermal decomposition leads to complete conversion of the chemisorbed monolayer into surface carbon, alloying with Sn strongly reduces the amount of carbon thus formed. In addition, the temperature for complete dehydrogenation of the carbonaceous residue formed from acetylene decomposition (polymerization) is increased by up to 100 K, from 760 to 860 K. Both of these phenomena are consistent with observations of increased lifetimes and decreased coking for technical Pt–Sn bimetallic catalysts compared to Pt catalysts used for hydrocarbon conversion reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.