Abstract

Catalytic glycerol dehydration provides a sustainable route to produce acrolein because glycerol is a bioavailable platform chemical. However, in this process catalysts are rapidly deactivated due to coking. This paper examines and discusses recent insights into coking of catalysts during catalytic glycerol dehydration. The nature and location of coke and the rate of coking depend on feedstock, operating conditions, and the acidity and pore structure of the solid catalysts. Several methods have been suggested for inhibiting the coking and slowing the deactivation of catalyst, including (1) cofeeding of oxygen, (2) tuning of the pore size of the solid acid catalysts, (3) doping noble metals (Ru, Pt, Pd) into the solid acid catalysts, and (4) designing new reactors. The present methods for inhibiting coking are still unsatisfactory. The deactivated catalysts can be regenerated by removing coke. Nevertheless, the rapid deactivation of the regenerated catalyst remains problematic. The literature survey indica...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call