Abstract

Summary Previously, nuclear-magnetic-resonance (NMR) carbon-type-analysis data were used to develop a mathematical model of mild thermal conversion (visbreaking) of Athabasca bitumen (Chan et al. 2006). In that work, the major reaction pathways followed during visbreaking were identified. This approach is being extended in the current work to model the visbreaking behaviour of five different oils from different geographical locations around the world. This paper shows the correlation of residue conversion with the contents of different carbon types for five heavy oils from four continents. During visbreaking runs, operators intend to maximize process yields. This is achieved through increasing process severity by raising temperature. However, if the temperature is too high, coke forms. This maximum temperature varies with different crude oils; therefore, as refinery feedstock composition changes, so does the onset of coking temperature. Coke is a hydrocarbon material that has low hydrogen content and is insoluble in the oil. Consequently, this precipitates in the reactor, eventually causing an unscheduled unit shutdown. We have found that contents of specific carbon types in the feed oils correlate with coke formation. This correlation allows prediction of the quantities of coke that will form under the chosen visbreaking (mild thermal) conditions and the "maximum" quantities of coke that would form under coking (severe thermal) conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call