Abstract

The coke deposition on HZSM-5/SAPO-34 composite catalysts has been studied in the conversion of ethanol to propylene. The HZSM-5/SAPO-34 composite catalysts were synthesized by hydrothermal method (ZS-HS) and fully blending (ZS-MM). The used catalysts were characterized by XRD, N2 adsorption–desorption, TGA, TPO, elemental analysis, FTIR and XPS. The coking kinetics on both ZS-HS and ZS-MM has been investigated and their coking rate equations were obtained. The used ZS-MM catalyst had higher amount of coke and lower nC:nH than the used ZS-HS. 90% of the coke was deposited in the micropores of ZS-HS, while almost 45% of the coke located in the micropores of ZS-MM. The coke deposited on ZS-HS catalyst was mainly graphite-like carbon species, whereas dehydrogenated coke species was the major on ZS-MM. The coking activation energy of ZS-MM was lower than that of ZS-HS, and the coking rate on ZS-MM was faster than on ZS-HS. In addition, the regeneration of ZS-MM catalyst showed that it had a good hydrothermal stability. The differences on coking behaviors on the two catalysts were due to their different acidic properties and textures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call