Abstract
AbstractWe study the panel dynamic ordinary least square (DOLS) estimator of a homogeneous cointegration vector for a balanced panel of N individuals observed over T time periods. Allowable heterogeneity across individuals include individual‐specific time trends, individual‐specific fixed effects and time‐specific effects. The estimator is fully parametric, computationally convenient, and more precise than the single equation estimator. For fixed N as T→∞, the estimator converges to a function of Brownian motions and the Wald statistic for testing a set of s linear constraints has a limiting χ2(s) distribution. The estimator also has a Gaussian sequential limit distribution that is obtained first by letting T→∞ and then letting N→∞. In a series of Monte‐Carlo experiments, we find that the asymptotic distribution theory provides a reasonably close approximation to the exact finite sample distribution. We use panel DOLS to estimate coefficients of the long‐run money demand function from a panel of 19 countries with annual observations that span from 1957 to 1996. The estimated income elasticity is 1.08 (asymptotic s.e. = 0.26) and the estimated interest rate semi‐elasticity is −0.02 (asymptotic s.e. = 0.01).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.