Abstract
This paper proposes a new forecasting method in which the cointegration rank switches at unknown times. In this method, time series observations are divided into several segments, and a cointegrated vector autoregressive model is fitted to each segment. The goodness of fit of the global model, consisting of local models with different cointegration ranks, is evaluated using the information criterion (IC). The division that minimizes the IC defines the best model. The results of an empirical application to the US term structure of interest rates and a Monte Carlo simulation suggest the efficacy as well as the limitations of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.