Abstract

Potato spindle tuber viroid (PSTVd) is one of the smallest (about 360 nt) infectious plant agents. It is composed of a single-stranded circular non-coding RNA molecule. In the course of previous passage experiments with two intermediate PSTVd variants I2 and I4, three non-infectious clones (I2-50, I4-37 and I4 VI-17) were found. When inoculated separately as cDNAs on tomato "Rutgers" test plants these variants did not induce any visible disease symptoms and did not produce progeny. The presence of such non-infectious variants raises several questions about their origin and biology and to answer them, mixed co-infections with cDNA copies of two non-infectious variants (I2-50, I4-37) were performed. PSTVd infection was observed in seven out of 30 inoculated plants. The progeny isolated from three separate plants contained novel variants, together with the parental I2 and I4 sequences. It is conceivable that the appearance of repaired PSTVd molecules, clearly capable of cell-to-cell movement leading to the systemic infection, results from recombination events. An analysis of the recombinant molecules and comparison with databases identified the specific sites responsible for the restricted infectivity of the I2-50 and I4-37 PSTVd variants. In parallel experiments in which (+) strand PSTVd infectious transcripts were used, no recombinants were observed, and the original I2-50 and I4-37 non-infectious sequences were not detected in the progeny.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call