Abstract

As a potential low-cost and environmentally friendly strategy, bioremediation of herbicide polluted soil has attracted increasing attention. However, there is a lack of knowledge regarding the response of the atrazine-degrading bacterial community to coinoculation of arbuscular mycorrhizal (AM) fungi and rhizobia for atrazine dissipation. In this study, a pot experiment was conducted with AM fungi Glomus mosseae (AM), rhizobia Rhizobium trifolii TA-1 (R) and their coinoculation (AMR) with atrazine. In each treatment, the atrazine-degrading bacterial community of four soil size aggregates, namely large macroaggregates (LMa), small macroaggregates (SMa), microaggregates (Mia) and primary particles (P) were investigated. The results showed that the atrazine residue concentration was lowest in AMR, and that in LMa was also significantly lower than that in the other smaller aggregate sizes. Overall, inoculation, the aggregate fraction and their interaction had significant effects on soil TN, SOC, AP and pH. For the atrazine-degrading bacterial community, the Chao1 index increased with decreasing particle size, but the Shannon index decreased. Moreover, the abundances of the dominant atrazine-degrading bacterial genera Arthrobacter, Bacillus, Marmoricola and Nocardioides in the Mia and P particle size groups were greater than those in the LMa and SMa groups in each treatment. The bacterial communities in the Mia and P particle sizes in each treatment group were more complex. Therefore, coinoculation of AM fungi and rhizobia stimulated atrazine dissipation by changing the atrazine-degrading bacterial community, and the response of the atrazine-degrading bacterial community to each aggregate size varied depending on its distinct soil physicochemical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call