Abstract

Background: Coinfection with bacteria, fungi, and respiratory viruses in SARS-CoV-2 is of particular importance due to the possibility of increased morbidity and mortality. In this meta-analysis, we calculated the prevalence of such coinfections. Methods: Electronic databases were searched from 1 December 2019 to 31 March 2021. Effect sizes of prevalence were pooled with 95% confidence intervals (CIs). To minimize heterogeneity, we performed sub-group analyses. Results: Of the 6189 papers that were identified, 72 articles were included in the systematic review (40 case series and 32 cohort studies) and 68 articles (38 case series and 30 cohort studies) were included in the meta-analysis. Of the 31,953 SARS-CoV-2 patients included in the meta-analysis, the overall pooled proportion who had a laboratory-confirmed bacterial infection was 15.9% (95% CI 13.6–18.2, n = 1940, 49 studies, I2 = 99%, p < 0.00001), while 3.7% (95% CI 2.6–4.8, n = 177, 16 studies, I2 = 93%, p < 0.00001) had fungal infections and 6.6% (95% CI 5.5–7.6, n = 737, 44 studies, I2 = 96%, p < 0.00001) had other respiratory viruses. SARS-CoV-2 patients in the ICU had higher co-infections compared to ICU and non-ICU patients as follows: bacterial (22.2%, 95% CI 16.1–28.4, I2 = 88% versus 14.8%, 95% CI 12.4–17.3, I2 = 99%), and fungal (9.6%, 95% CI 6.8–12.4, I2 = 74% versus 2.7%, 95% CI 0.0–3.8, I2 = 95%); however, there was an identical other respiratory viral co-infection proportion between all SARS-CoV-2 patients [(ICU and non-ICU) and the ICU only] (6.6%, 95% CI 0.0–11.3, I2 = 58% versus 6.6%, 95% CI 5.5–7.7, I2 = 96%). Funnel plots for possible publication bias for the pooled effect sizes of the prevalence of coinfections was asymmetrical on visual inspection, and Egger’s tests confirmed asymmetry (p values < 0.05). Conclusion: Bacterial co-infection is relatively high in hospitalized patients with SARS-CoV-2, with little evidence of S. aureus playing a major role. Knowledge of the prevalence and type of co-infections in SARS-CoV-2 patients may have diagnostic and management implications.

Highlights

  • Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was first described in Wuhan, China in 2019.Globally, as of 15 April 2021, there have been 137,866,311 confirmed cases of COVID-19, including 2,965,707 deaths, as reported by the World Health Organization [1]

  • The overall pooled proportions of SARS-CoV-2 patients who had laboratory-confirmed bacterial, fungal, and respiratory viral coinfections were 15.9%, 3.7%, and 6.6%, respectively; (Figures 2–4)

  • Bacterial and fungal coinfections were more common in intensive care unit (ICU) patients ((22.2%%, 95% confidence intervals (CIs) 16.1–28.4) and (9.6%, 95% CI 6.8–12.4), respectively) than mixed ICU and nonICU patients, as expected

Read more

Summary

Introduction

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was first described in Wuhan, China in 2019.Globally, as of 15 April 2021, there have been 137,866,311 confirmed cases of COVID-19, including 2,965,707 deaths, as reported by the World Health Organization [1]. Such coinfections in patients with SARS-CoV-2 may be a cause of increased morbidity and mortality [2,6,7,14,15,16,17,18,19,20,21,22]. In light of recent studies evaluating coinfections in SARS-CoV-2 patients, we aimed to re-evaluate the prevalence of bacterial, fungal, and respiratory viral coinfections in a comprehensive meta-analysis. Coinfection with bacteria, fungi, and respiratory viruses in SARS-CoV-2 is of particular importance due to the possibility of increased morbidity and mortality. In this metaanalysis, we calculated the prevalence of such coinfections.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call