Abstract

BackgroundSclerotinia sclerotiorum, a notorious plant fungal pathogen, causes yield loss of many crops and vegetables, and is a natural host of a diverse viruses with positive-sense RNA (+ssRNA), negative-sense RNA (−ssRNA), double-stranded RNA (dsRNA), or DNA genomes. Mixed-infection with multiple related or unrelated mycoviruses is a common phenomenon in S. sclerotiorum. However, a single strain co-infected with dsRNA and + ssRNA viruses has not been reported in S. sclerotiorum.ResultsWe report two unrelated viruses, Sclerotinia sclerotiorum botybirnavirus 2 (SsBRV2) with a bipartite dsRNA genome and Sclerotinia sclerotiorum mitovirus 4 (SsMV4/AH16) with a + ssRNA genome, which were originally detected in a single hypovirulent strain AH16 of S. sclerotiorum. SsMV4/AH16 has a typical genome of mitovirus and is a strain of mitovirus SsMV4. The genome of SsBRV2 consists of two separated dsRNA segments. The large dsRNA segment is 6159 bp in length and only has a single open reading frame (ORF) encoding a putative 1868-aa polyprotein with a conserved RNA dependent RNA polymerase (RdRp) domain. The small dsRNA segment is 5872 bp in length and encodes a putative 1778-aa protein. Phylogenetic analysis using RdRp conserved domain sequences revealed that SsBRV2 is phylogenetically related to the previously reported three bipartite viruses SsBRV1, Botrytis porri RNA virus 1 (BpRV1), and soybean leaf-associated botybirnavirus 1 (SlaBRV1). Electron microscopy demonstrated that SsBRV2 forms rigid spherical virions with a diameter of approximately 40 nm in infected mycelia. The virion of SsBRV2 was successfully introduced into a virus-free strain, which provides conclusive evidence that SsBRV2 confers hypovirulence on phytopathogenic fungus S. sclerotiorum.ConclusionsA bisegmented dsRNA virus (SsBRV2/AH16) and a nonsegmented + ssRNA virus (SsMV4/AH16) were characterized in a hypovirulent strain AH16 of S. sclerotiorum. SsMV4/AH16 is a strain of a reported mitovirus, whereas SsBRV2 is a new botybirnavirus. SsBRV2 is the causal agent of hypovirulence on S. sclerotiorum. Our findings supplied a first evidence that a single S. sclerotiorum strain is co-infected by dsRNA and + ssRNA mycoviruses.Electronic supplementary materialThe online version of this article (doi:10.1186/s12985-016-0550-2) contains supplementary material, which is available to authorized users.

Highlights

  • Sclerotinia sclerotiorum, a notorious plant fungal pathogen, causes yield loss of many crops and vegetables, and is a natural host of a diverse viruses with positive-sense RNA (+ssRNA), negative-sense RNA (−ssRNA), double-stranded RNA, or DNA genomes

  • When L-double-stranded RNA (dsRNA) elements were resolved on 5 % PAGE gel for 48 h, two similar sized L-dsRNA segments (L1-dsRNA and L2-dsRNA) were obviously separated (Fig. 1b, right figure), revealing that purified virus-like particles (VLPs) contain at least 2 dsRNA species, and strain AH16 is infected by one or more mycoviruses

  • We subsequently demonstrated that the two L-dsRNA segments from the mycelia were associated with the purified VLPs, and further confirmed that they represented the genome of a new botybirnavirus, whereas SdsRNA was the genome of a mitovirus

Read more

Summary

Introduction

Sclerotinia sclerotiorum, a notorious plant fungal pathogen, causes yield loss of many crops and vegetables, and is a natural host of a diverse viruses with positive-sense RNA (+ssRNA), negative-sense RNA (−ssRNA), double-stranded RNA (dsRNA), or DNA genomes. Mycoviruses usually have double-stranded RNA (dsRNA), single-stranded (ssRNA), and rare ssDNA genomes [4]. An EC-approved ICTV proposed family Botybirnaviridae (https://talk.ictvonline.org/files/ictv_official_taxonomy_updates_since_the_8th_report/m/fungal-official/5871) comprised three potential members of Botrytis porri botybirnavirus 1 (BpRV1), Sclerotinia sclerotiorum botybirnavirus 1 (SsBRV1), and soybean leaf-associated botybirnavirus 1 (SlaBRV1) [11,12,13]. These studies have expanded our knowledge of virus genome, taxonomy, evolution and the interaction between viruses and their hosts

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call