Abstract
In this article we present a method for formally proving the correctness of the lazy algorithms for computing homographic and quadratic transformations — of which field operations are special cases— on a representation of real numbers by coinductive streams. The algorithms work on coinductive stream of Möbius maps and form the basis of Edalat–Potts exact real arithmetic. We build upon our earlier work of formalising the homographic and quadratic algorithms in constructive type theory via general corecursion. Based on the notion of cofixed point equations for general corecursive definitions we prove by coinduction the correctness of the algorithms. We use the machinery of the Coq proof assistant for coinductive types to present the formalisation. The material in this article is fully formalised in the Coq proof assistant.KeywordsPoint EquationProof ObligationCorrectness ProofExact ArithmeticGuardedness ConditionThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.