Abstract

Abstract Anomaly detection is an important task for complex scientific experiments and other complex systems (e.g. industrial facilities, manufacturing), where failures in a sub-system can lead to lost data, poor performance, or even damage to components. While scientific facilities generate a wealth of data, labeled anomalies may be rare (or even nonexistent), and expensive to acquire. Unsupervised approaches are therefore common and typically search for anomalies either by distance or density of examples in the input feature space (or some associated low-dimensional representation). This paper presents a novel approach called coincident learning for anomaly detection (CoAD), which is specifically designed for multi-modal tasks and identifies anomalies based on coincident behavior across two different slices of the feature space. We define an unsupervised metric, F ^ β , out of analogy to the supervised classification F β statistic. CoAD uses F ^ β to train an anomaly detection algorithm on unlabeled data, based on the expectation that anomalous behavior in one feature slice is coincident with anomalous behavior in the other. The method is illustrated using a synthetic outlier data set and a MNIST-based image data set, and is compared to prior state-of-the-art on two real-world tasks: a metal milling data set and our motivating task of identifying RF station anomalies in a particle accelerator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call