Abstract

A hypothesis of the quantum nature of the specific temperatures T s of water and ice, whose values is not random, was formulated. It was found that the quantum energy hΩ mn of closely located rotational transitions in the ortho and para spin isomers of H2O molecules coincides with the translation energy kT near the well-known specific temperatures T s in ice and water. On the basis of this fact it was suggested that ortho-para conversion occurs at temperatures close to T s upon inelastic collisions and resonance energy exchange kT s ↔ hΩ mn in the rotation-translation-rotation (RTR) processes. Such conversion can induce rearrangement of the H-bond set structure and repacking of H2O molecules. The coincidence kT s ≈ hΩ mn was checked for ice and water at 12 known T s, as well as for heavy water D2O near T s = 11.2°C (maximum density) and −140°C (glassy transition). The previously observe strong deformation of the OH Raman band near T s = 4, 19, 36, and 76°C (maximum density, maximum surface tension, minimum heat capacity, and maximum speed of sound, respectively) was interpreted as a manifestation of the water structure rearrangement induced by H2O ortho-para conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.