Abstract
Coulomb explosion of CO2, CO2→CO22++2e−→CO++O++2e−, in phase-locked two-color ultrashort intense laser fields (800nm and 400nm, ∼1014W/cm2) has been investigated by coincidence momentum imaging. The momentum images of the O+ and CO+ fragments show asymmetric distributions along the laser polarization direction depending on the relative phase of the two-color laser fields. The fragment asymmetry becomes most prominent (∼4%) at the relative phases providing the largest asymmetry of the electric field amplitude, with the O+ fragments preferentially ejected to the stronger field side. The mechanism of the asymmetric bond breaking of the two equivalent CO bonds is discussed in terms of the nuclear dynamics in CO22+.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electron Spectroscopy and Related Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.