Abstract

The structural stability of coinage metal nanotubes with a square cross-section has been investigated by the first-principles numerical simulations. In addition to the reported (4, 4) silver tube, it is found that the hollow (4, 4) copper and gold nanotubes can also be formed by applying an appropriate stress to an 8(A)/8(B) fcc wire. The stability of these coinage metal (4, 4) nanotubes, formed by tip-stretching the wires, has been explained by a local minimum in the string tension variation with their tube lengths. Interestingly, we have explained why a low-stress stretching is needed to obtain the (4, 4) Cu tube in contrast to a higher one for both the (4, 4) Ag and Au tubes due to the larger stiffness coefficient of copper than those of silver and gold, which could be proved by future experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.