Abstract

A C-cross section thin-walled composite deployable boom (C boom) can be flattened and coiled elastically. Furthermore, C boom can be deployed by releasing stored strain energy. Finite element (FE) models of C booms are constructed based on a nonlinear explicit dynamics analysis. The full simulation is divided into six consecutive steps: flattening, end-compacting, releasing, coiling, holding, and deploying around a hub. An optimal design method for the coiling and deploying of the C boom is presented based on the response surface method (RSM). Twenty-seven sample points are obtained by using a full-factorial design of experiment method. Surrogate models of the maximum moment and stress during the fully simulated process, including the mass of the C boom, are created by the RSM. The maximum moment and mass are set as objectives, and the maximum stress is set as a constraint to increase deploying statue stiffness and enhance use times. A multi-objective optimization design of the C boom is performed by sequential quadratic programming algorithm. Lastly, FE models for the optimal design are built to validate the accuracy of the optimization and the response surface results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call