Abstract

Leibniz-type rules for Coifman–Meyer multiplier operators are studied in the settings of Triebel–Lizorkin and Besov spaces associated with weights in the Muckenhoupt classes. Even in the unweighted case, improvements on the currently known estimates are obtained. The flexibility of the methods of proofs allows one to prove Leibniz-type rules in a variety of function spaces that include Triebel–Lizorkin and Besov spaces based on weighted Lebesgue, Lorentz, and Morrey spaces as well as variable-exponent Lebesgue spaces. Applications to scattering properties of solutions to certain systems of partial differential equations involving fractional powers of the Laplacian are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.