Abstract

A new boundary extension technique based on the Lagrange interpolating polynomial is proposed and used to solve the function approximation defined on an interval by a series of scaling Coiflet functions, where the coefficients are used as the single-point samplings. The obtained approximation formula can exactly represent any polynomials defined on the interval with the order up to one third of the length of the compact support of the adopted Coiflet function. Based on the Galerkin method, a Coiflet-based solution procedure is established for general two-dimensional p-Laplacian equations, following which the equations can be discretized into a concise matrix form. As examples of applications, the proposed modified wavelet Galerkin method is applied to three typical p-Laplacian equations with strong nonlinearity. The numerical results justify the efficiency and accuracy of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.