Abstract

In this work, polyethylene terephthalate (PET) and sewage sludge (SS) were co-hydrothermally carbonized to produce low-nitrogen solid fuels. To minimize the effect of nitrogen, this work introduces a co-hydrothermal carbonization method involving alkali (A), ultrasonic cell disruptor (UCC), and sodium dodecyl sulfate (SDS) for both individual and combined pretreatment of SS and PET. Comparative analysis of the products shows that the combined pretreatment with sodium dodecyl sulfate (SDS) and alkali (A) effectively disrupts the SS cell structure, leading to the loosening of stable extracellular polymeric substances (EPS). This condition is conducive to the release and hydrolysis of proteins during hydrothermal carbonization. Moreover, under conditions where PET serves both as an acid producer and a carbon source, and through parameter optimization at a temperature of 240 °C, reaction time of 2 h, PET addition of 20 wt%, and water addition of 0.6 g cm-3, a high-quality, low-nitrogen clean solid fuel was produced (N: 0.51 wt%, C: 19.10 wt%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.