Abstract

ObjectiveThe goal of the 2018 n2c2 shared task on cohort selection for clinical trials (track 1) is to identify which patients meet the selection criteria for clinical trials. Cohort selection is a particularly demanding task to which natural language processing and deep learning can make a valuable contribution. Our goal is to evaluate several deep learning architectures to deal with this task.Materials and MethodsCohort selection can be formulated as a multilabeling problem whose goal is to determine which criteria are met for each patient record. We explore several deep learning architectures such as a simple convolutional neural network (CNN), a deep CNN, a recurrent neural network (RNN), and CNN-RNN hybrid architecture. Although our architectures are similar to those proposed in existing deep learning systems for text classification, our research also studies the impact of using a fully connected feedforward layer on the performance of these architectures.ResultsThe RNN and hybrid models provide the best results, though without statistical significance. The use of the fully connected feedforward layer improves the results for all the architectures, except for the hybrid architecture.ConclusionsDespite the limited size of the dataset, deep learning methods show promising results in learning useful features for the task of cohort selection. Therefore, they can be used as a previous filter for cohort selection for any clinical trial with a minimum of human intervention, thus reducing the cost and time of clinical trials significantly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.