Abstract

Cohort case-control design is an efficient and economical design to study risk factors for disease incidence or mortality in a large cohort. In the last few decades, a variety of cohort case-control designs have been developed and theoretically justified. These designs have been exclusively applied to the analysis of univariate failure-time data. In this work, a cohort case-control design adapted to multivariate failure-time data is developed. A risk set sampling method is proposed to sample controls from nonfailures in a large cohort for each case matched by failure time. This method leads to a pseudolikelihood approach for the estimation of regression parameters in the marginal proportional hazards model (Cox, 1972, Journal of the Royal Statistical Society, Series B 34, 187-220), where the correlation structure between individuals within a cluster is left unspecified. The performance of the proposed estimator is demonstrated by simulation studies. A bootstrap method is proposed for inferential purposes. This methodology is illustrated by a data example from a child vitamin A supplementation trial in Nepal (Nepal Nutrition Intervention Project-Sarlahi, or NNIPS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call